
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

10 IJDCST

Top-K Spatial Preferences Based On Quality
Features

R.JAYAMMA, Asst.Professor, Dept.of CSE,

MADHIRA INSTITUTE OF TECHNOLGY & SCIENCES, KODAD, NALGONDA, ANDHRA PRADESH.

Abstract: A spatial preference query ranks objects based on the qualities of features in their spatial neighborhood.

For example, using a real estate agency database of flats for sale, a customer may want to rank the flats with respect

to the appropriateness of their location, defined after aggregating the qualities of other features (e.g., restaurants,

market, hospital, railway station, etc.) within their spatial neighborhood. Such a neighborhood concept can be

specified by the user via different functions. In this paper, we study an interesting type of preference queries, which

select the best spatial location with respect to the quality of facilities in its spatial neighborhood. For example

consider the office construction, we want gather the requirements with respect their spatial neighborhood like

creation of right of way. Using our proposed work quality preferences of special data allocation can be done

efficiently.

I INTRODUCTION

The recent top-k spatial preference queries

ranks objects based on the spatial neighborhood

quality features. Spatial database systems manage

large collections of geographic entities, which apart

from spatial attributes contain non-spatial

information (e.g., size, type etc.). In this paper, we

study an interesting type of preference queries, which

select the best spatial location with respect to the

quality of facilities in its spatial neighborhood.

Traditional spatial queries and joins mainly

focused on distances and manipulating only spatial

locations, but they ignore the importance of quality

attributes. The dominance comparison is suitable for

comparing two objects with respect to multiple

quality attributes. In this system, we study an

interesting type of spatial queries, which select the

best spatial location with respect to the quality of

facilities in its spatial neighborhood. Given a set D of

interesting objects (e.g., candidate road locations), a

top-k spatial preference query retrieves the k objects

in D with the highest scores.

Traditionally, there are two basic ways for

ranking objects: 1) spatial ranking, which orders the

objects according to their distance from a reference

point, and 2) non spatial ranking, which orders the

objects by an aggregate function on their non spatial

values. The top-k spatial preference query integrates

these two types of Ranking in an intuitive way.

Despite the usefulness of the top-k spatial preference

query, to our knowledge, it has not been studied in

the past. A brute-force approach for evaluating it is to

compute the scores of all objects in D and select the

top-k ones. This method, however, is expected to be

very expensive for large input datasets.

For example, consider road networks which

consists of different features like location of road,

type, name if exist etc. Based on this features, we

retrieve the top-k spatial preference query retrieves

the k objects i.e., roads with highest scores..The

neighborhood of an object is captured by the scoring

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

11 IJDCST

function: 1) The range score restricts the

neighborhood to a crisp region centered at p, whereas

2) the influence score relaxes the neighborhood to the

whole space and assigns higher weights to locations

closer to p. We presented probing algorithms for

processing top-k spatial preference queries.

II RELATED WORK

Assuming that the set of interesting objects

is indexed by a hierarchical spatial access method

(e.g., the R-tree), we can use distance bounds while

traversing the index to derive the answer in a branch

and- bound fashion. Tao et al. noted that top-k

queries can be modeled as (weighted) nearest

neighbor queries, in the multi-dimensional space

defined by the involved attribute domains, where the

query point is formed by taking the maximum value

of each dimension. Our techniques apply on spatial

partitioning access methods and compute upper score

bounds for the objects indexed by them, which are

used to effectively prune the search space.

In spatial databases, ranking is often

associated to nearest neighbor (NN) retrieval. Given

a query location, we are often interested in retrieving

the set of nearest objects to it that qualify a condition

(e.g., roads, restaurants). . Nevertheless, it is not

always possible to use multidimensional indexes for

top-k retrieval. First, such indexes usually break-

down in high dimensional spaces. Second, top-k

queries may involve an arbitrary set of attributes

from a set of possible ones and indexes may not be

available for all possible attribute combinations (i.e.,

they are too expensive to create and maintain). Third,

information for different rankings to be combined

(i.e., for different attributes) could appear in different

databases (in a distributed database scenario) and

unified indexes may not exist for them.

Spatial Query Evaluation on R-trees

Given a spatial region W, a spatial range

query retrieves from R the objects that intersect W. A

nearest neighbor (NN) query takes as input a query

object q and returns the closest object in R to q. A

popular generalization is the k-NN query, which

returns the k closest objects to q, given a positive

integer k. NN (and k-NN) queries can be efficiently

processed using the best-first (BF) algorithm,

provided that R is indexed by an R-tree. A priority

queue PQ which organizes Rtree entries based on the

(minimum) distance of their MBRs to q is initialized

with the root entries. The aggregate R- tree (aR-tree)

is a variant of the R-tree, where each non-leaf entry

augments an aggregate measure for some attribute

value (measure) of all points in its subtree. R-trees

can efficiently process main spatial query types,

including spatial range queries, nearest neighbor

queries, and spatial joins Feature-based Spatial

Queries.

Related to top-k influential query are the

optimal location queries. The goal is to find the

location in space (not chosen from a specific set of

roads) that minimizes an objective function.

Recently, solved the problem of finding top-k sites

(e.g., roads) based on their influence on feature points

(e.g., junctions, individual roads). Here, assume that

all feature points have the same quality. The

maximum influence optimal location query finds the

location (to insert to the existing set of roads) with

the maximum influence, whereas the minimum

distance optimal location query searches for the

location that minimizes the average distance from

each feature point to its nearest site. The optimal

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

12 IJDCST

locations for both queries are marked as white

points..

III Algorithms for Spatial

Preference Queries

The techniques proposed are specific to the

particular query types described above and cannot be

extended for the class of top-k spatial preference

queries and they deal with a single feature dataset

whereas our queries consider multiple feature

datasets. By implementing top-k spatial preference

query, we will retrieve the k points in an object

dataset D (i.e., set of interesting points like junctions

or roads) which has the highest score. subtree.

Nevertheless, our solutions are generic and it can be

adapted where the datasets are indexed by other

hierarchical spatial indexes (e.g., point quad- trees).

The rational of indexing different feature

datasets by separate a R-trees is that: (i) out of all

possible features (e.g., road networks, hospital,

market, etc.), a user queries for only few features

which are required (e.g., roads), and (ii) different

subsets of features are considered or used by different

users. Based on the indexing schemes which are

specified in related work, we implement various

algorithms for processing top-k spatial preference

queries which are listed below:

Probing Algorithms:

Initially, we introduce a brute-force solution

that computes the score of every point p which

belongs to dataset D in order to obtain the query

results. Then, we propose to implement a special

group evaluation technique that computes the scores

concurrently for multiple points.

Simple Probing Algorithm:

To implement this algorithm, global

variables are used. They are: Wk is a min-heap for

managing the top-k results and represents the top-k

score so far (i.e., lowest score in Wk). The simple

probing algorithm (SP) compute the score for every

object point present in dataset then retrieve the query

results based on the computed scores. Initially, the

algorithm is started at the root node of the object tree

(i.e., N = D.root). The procedure is recursively

applied on tree nodes until a leaf node is accessed.

Score is calculated at each node until it receives the

leaf node. When a leaf node is reached, the

component score c(e) is computed by executing aד

range search (NN search) on the feature tree Fc for

range score (NN score) queries

.

Group probing Algorithm

Group Probing Algorithm: Due to separate

score computations for each and every object in data

set, SP is inefficient when large object datasets. To

overcome the above drawback, we implement the

group probing algorithm (GP) which is a variant of

SP, that reduces overall I/O cost by computing scores

of objects in the same leaf node of the R-tree

concurrently.

Branch and Bound Algorithm

In GP, when a leaf node is visited, its points

are first stored in a set V and then their component

scores are computed concurrently at a single traversal

of the Fc tree. In order to overcome the problem of

SP, GP was introduced but it is expensive. GP

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

13 IJDCST

examines all objects in D and computes their

component scores. Now, we propose an algorithm

that can significantly reduce the number of objects to

be examined. The key idea is to compute, for non-

leaf entries e in the object tree D, an upper bound T

(e) (but not ד (e)) of the score for any point in the

subtree of e.

Now, recall that T(e) which is an upper

bound score for any point in e. With the component

scores Tc(e) known so far, we can derive a new score

called T+(e), an upper bound of T (e). If T+(e) ≤ γ ,

then the subtree of e cannot contain better results than

Those in Wk and it is removed from V . BB(Branch

and Bound) is called with N being the root node of D.

If N is a leaf node then we update the set Wk of the

top-k results with concurrently computed scores for

all points of N. If N is a non-leaf node, compute the

scores T(e) concurrently for non-leaf entries. We sort

the entries in descending order of T(e) then we

invoke the procedure recursively on child node which

wasx pointed by the entries presented in V, in order

to obtain points with high scores. Since both Wk and

γ are global variables, the value of γ is updated

during recursive call of BB.

Algorithm1. Branch-and-Bound Algorithm Wk =new

min-heap of size k (initially empty);

Γ:=0; kth score in Wk algorithm BB(Node N) 1. V

:={e|eє N};

If N is nonleaf then

for c:=1 to m do

4. compute Tc(e) for all eЄV concurrently;

5. remove entries e in V such that T +(e)<=γ;

sort entries eЄV in descending order of T(e);

for each entry eЄV such that T +(e)<=γ; do

read the child node N′ pointed by e;

BB(N′);

else

for c=1 to m do

compute rc(e) for all eЄV concurrently;

remove entries e in V such that T +(e)<=γ;

14. update Wk (and γ) by entries in V ;

Our major goal is to compute these upper bound

scores with low I/O cost and the bounds not to be too

loose, in order for pruning to be effective. For this,

we utilize only level-1 entries (i.e., lowest level non-

leaf entries) in Fc for deriving upper bound scores

because: (i) there are much fewer level-1 entries than

leaf entries, and (ii) high level entries in Fc cannot

provide tight bounds. Algorithm can be used for this

purpose after changing Line 2 to check whether child

nodes of N are above the leaf level.

Optimized Branch-and-Bound Algorithm

To reduce the cost of the BB algorithm, we develops

a more efficient score computation technique. Let p

be an object point in Data set D. Suppose that we

have traversed some paths of the feature trees on

F1,F2, . . . ,Fm. Let γ be an upper bound of the

quality value for any unvisited entry(leaf or non-leaf)

of the feature tree Fc.

algorithm Optimized_Group_Range(Trees

F1,F2, . . . ,Fm, Set V , Value c , Value γ)

for c := 1 to m do

Hc := new max-heap (with quality score as key);

insert Fc.root into Hc;

μc := 1;

for each entry pЄV do

6. rc(p):= 0;

7. α:=1; . ID of the current feature tree

while |V| > 0 and there exists a nonempty heap Hc do

deheap an entry e from Hc; 10..update threshold

11. if γ:= V ; mindist є pthen

12. continue at Line 8;

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

14 IJDCST

13. for each p є V do . Prune unqualified points

remove p from V ;

read the child node CN pointed to by e;

for each entry e′ of CN do

if CN is a non-leaf node then insert e′ into Hc;

Here, є refers to the distance threshold of the

range score, and γ represents the best score found so

far. For each feature tree Fc, we employ a maxheap

Hc to traverse the entries of Fc in descending order of

their quality values. The pseudo code for computing

the scores of objects efficiently from the feature trees

F1,F2, . . . ,Fm. The set V contains objects whose

scores need to be computed. The root of Fc is first

inserted into Hc. The variable maintains the upper

bound quality of entries in the tree that will be

visited. We then initialize each component score

rc(p) of every object pЄV to 0.

IV PERFORMANCE

Our algorithms can directly be applied for

such extended preference queries. A simple

optimization applicable for these queries is to prune

non-leaf entries at feature trees, if they are closer than

c, butד cannot improve , due to the distance of their

MBRs to the examined objects. Another extension of

our queries include preferences also on the data

objects. For instance, assume that we are looking for

flats that are cheap, big, and close to vegetarian

restaurants.

There are several ways to process such

queries. BB can be optimized to prioritize the

examination of data in D, based on preferences on the

object attributes and prune subtrees that cannot lead

to better results than the ones currently found. First,

our algorithms can be used for this purpose if the

object tree is also an aR-tree, where the non-spatial

attributes (e.g., type, size) are aggregated

accordingly. Another method is to search primarily

on the nonspatial preferences, with the use of a top-k

algorithm and probe the feature sets for the spatial

preference component, as long as the current top-k

results can be improved. In NN score computation,

we weight based on a maximum acceptable distance

of a nearest neighbor. Thus, data objects with very

close nearest neighbor of moderate quality may be

preferable to objects with a far nearest neighbor, even

if it has a higher quality.

V CONCLUSION

Initially, we implemented a baseline

algorithm Simple probing which computes the scores

of every object by performing spatial queries on

feature datasets. But SP reduces the number of

component score computations for the objects which

is optimized by an incremental computation

technique. Next, we presented a variant of SP i.e.,

group probing algorithm which reduces I/O cost by

computing scores of objects in the same leaf node

concurrently. Later based on GP, we developed

algorithm Branch and Bound, which prunes non-leaf

entries in the object tree that cannot lead to better

results. For efficient results, we optimized branch and

bound algorithm to reduce the cost of the BB

algorithm. Spatial database systems manage large

collections of geographic entities, which apart from

spatial attributes contain non spatial information. In

this paper, we studied top-k spatial preference

queries, which provide a novel type of ranking for

spatial objects based on qualities of features in their

neighborhood. In our proposed technique we have to

develop some Upper Bound methods for the objects,

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

15 IJDCST

they are used to proving the search process in the

Spatial data process.

VI REFERENCES

[1] M.L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis,

“Top-k Spatial Preference Queries,” Proc. IEEE Int’l

Conf. Data Eng. (ICDE), 2007.

[2] N. Bruno, L. Gravano, and A. Marian,

“Evaluating Top-k Queries over Web-Accessible

Databases,” Proc. IEEE Int’l Conf. Data Eng.

(ICDE), 2002.

[3] A. Guttman, “R-Trees: A Dynamic Index

Structure for Spatial Searching,” Proc. ACM

SIGMOD, 1984.

[4] G.R. Hjaltason and H. Samet, “Distance

Browsing in Spatial Databases,” ACM Trans.

Database Systems, vol. 24, no. 2, pp. 265- 318, 1999.

[5] R. Weber, H.-J. Schek, and S. Blott, “A

Quantitative Analysis and Performance Study for

Similarity-Search Methods in High-Dimensional

Spaces,” Proc. Int’l Conf. Very Large Data Bases

(VLDB), 1998.

[6] K.S. Beyer, J. Goldstein, R. Ramakrishnan, and

U. Shaft, “When is ‘Nearest Neighbor’ Meaningful?”

Proc. Seventh Int’l Conf. Database Theory (ICDT),

1999.

[7] C.S. Jensen, J. Kolar, T.B. Pedersen, and I.

Timko, “Nearest Neighbor Queries in Road

Networks,” Proc. ACM Int’l Workshop Geographic

Information Systems, 2003.

[8] N. Jing, Y.W. Huang, and E.A. Rundensteiner,

“Hierarchical Encoded Path Views for Path Query

Processing: An Optimal Model and Its Performance

Evaluation,” IEEE Trans. Knowledge and Data Eng.,

vol. 10, no. 3, pp. 409- 432, 1998.

[9] I. F. Ilyas,W. G. Aref, and A. Elmagarmid.

Supporting Top-k Join Queries in Relational

Databases. In VLDB, 2003.

[12] N. Mamoulis, K. H. Cheng, M. L. Yiu, and D.

W. Cheung. Efficient Aggregation of Ranked Inputs.

In ICDE,2006.

About Author

I am R.Jayamma working as a Assistant Professor

CSE department in MITS

Engineering College. I am

having 10 years of

experience in various

subjects in Computer

Science Engineering. My

interest in developing and research in data mining,

cloud computing, networking etc.

